

1 Let $A(0,0)$, $B(0,1)$, $C(1,1)$, $D(1,0)$ be points on a coordinate plane. Let t satisfy $0 < t < 1$, P_t, Q_t, R_t be the points on the segments AB, BC, CD , respectively, such that $\frac{AP_t}{P_t B} = \frac{BQ_t}{Q_t C} = \frac{CR_t}{R_t D} = \frac{t}{1-t}$, S_t, T_t be the points on the segments $P_t Q_t, Q_t R_t$, respectively, such that $\frac{P_t S_t}{S_t Q_t} = \frac{Q_t T_t}{T_t R_t} = \frac{t}{1-t}$, and U_t be the point on the segment $S_t T_t$ such that $\frac{S_t U_t}{U_t T_t} = \frac{t}{1-t}$. Furthermore, let A, D be U_0, U_1 , respectively.

- (1) Find the coordinates of the point U_t .
- (2) Find the area of the domain surrounded by the segment AD and the curve traced by the point U_t , $0 \leq t \leq 1$.
- (3) Let a satisfy $0 < a < 1$. Express the length of the curve traced by the point U_t , $0 \leq t \leq a$, as a polynomial in a .

2 (1) Prove $\ln x \leq x-1$ for $x > 0$. (2) Find $\lim_{n \rightarrow \infty} n \int_1^2 \ln\left(\frac{1+x^{\frac{1}{n}}}{2}\right) dx$.

3 A parallelogram $ABCD$ satisfies $\angle ABC = \frac{\pi}{6}$, $AB = a$, $BC = b$, and $a \leq b$.

Consider a rectangle with the condition:

The vertices A, B, C, D lie on the edges EF, FG, GH, HE , respectively, where an edge includes its ends.

Let S be the area of the rectangle $EFGH$.

- (1) Express S in terms of a, b and $\theta = \angle BCG$.
- (2) Express the maximum of S in terms of a and b .

4 A square number is the square of a nonnegative integer.

Let a be a positive integer, and $f_a(x) = x^2 + x - a$.

- (1) Let n be a positive integer. Prove that $n \leq a$, if $f_a(n)$ is a square number.
- (2) Denote by N_a the number of positive integers n such that $f_a(n)$ is a square number.

Prove that the conditions (i), (ii) below are equivalent:

- (i) $N_a = 1$
- (ii) $4a+1$ is a prime.

5 There're n (≥ 2) cards numbered 1 through n , and we arrange them in a row.

Consider the following operation (T_i) , where $i=1, 2, \dots$, or $n-1$.

(T_i) If the number of the i th card (from the left end) is greater than that of the $(i+1)$ th one, we switch these 2 cards. Otherwise, we do nothing.

Suppose that the number of the i th card is A_i ($1 \leq i \leq n$) in the beginning, and it turns i for $i=1, \dots, n$ by $(n-1)$ operations $(T_1), (T_2), \dots, (T_{n-1})$ followed by $(n-1)$ operations $(T_{n-1}), \dots, (T_2), (T_1)$.

- (1) Prove that at least one of A_1, A_2 is not greater than 2.

- (2) Let C_n be the number of possible arrangement $A_1 \cdots A_n$.

For $n \geq 4$, express C_n in terms of C_{n-1} and C_{n-2} .

6 On a plane of complex numbers, let C be the circle centered at $\frac{1}{2}$ with radius $\frac{1}{2}$, minus zero.

- (1) For $z \in C$, prove that the real part of $\frac{1}{z}$ is 1.

(2) If $\alpha, \beta \in C$ and they're distinct, express the domain in which $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$ moves around.

- (3) If γ is a complex number belonging to the complement of the domain in (2), find the maximum and the minimum of the real part of $\frac{1}{\gamma}$.

Solution for the 2025 Math Exam at Univ. of Tokyo (Science, etc.)

① (1) First, we get $P_t(0, t)$,

$Q_t(1, 1-t)$, $R_t(1, 1-t)$. Next,

$$\overrightarrow{OS_t} = (1-t)\overrightarrow{OP_t} + t\overrightarrow{OQ_t}$$

$$= (0, t(1-t)) + (t^2, t) = (t^2, 2t - t^2),$$

$$\overrightarrow{OT_t} = (1-t)\overrightarrow{OQ_t} + t\overrightarrow{OR_t}$$

$$= (t(1-t), 1-t) + (t, t(1-t)) = (2t - t^2, 1 - t^2),$$

$$\overrightarrow{OU_t} = (1-t)\overrightarrow{OS_t} + t\overrightarrow{OT_t}$$

$$= (t^2(1-t), (1-t)(2t - t^2)) + (t(2t - t^2), t(1-t^2))$$

$$= (3t^2 - 2t^3, 3t - 3t^2). \therefore U_t(3t^2 - 2t^3, 3t - 3t^2).$$

(2) Let $(x, y) = (3t^2 - 2t^3, 3t - 3t^2)$, $0 \leq t \leq 1$.

$$\frac{dx}{dt} = 6t - 6t^2 = 6t(1-t), \quad \begin{array}{c|c|c|c} t & 0 & \frac{1}{2} & 1 \\ \hline \frac{dx}{dt} & + & + & \end{array}$$

$$\frac{dy}{dt} = 3 - 6t \text{ give us the table and the graph on the right.}$$

$$\text{Thus the area to find is } S = \int_0^1 y \, dx.$$

$$\begin{array}{c|c|c|c} (x) & (0) & \nearrow (1/2) & \searrow (1) \\ \hline (y) & (0) & (3/4) & (0) \end{array}$$

If we put $x = 3t^2 - 2t^3$,

we get $y = 3t - 3t^2$,

$$dx = (6t - 6t^2)dt, \quad \begin{array}{c|c|c} x & 0 \rightarrow 1 \\ \hline t & 0 \rightarrow 1 \end{array}$$

$$\therefore S = \int_0^1 (3t - 3t^2)(6t - 6t^2)dt$$

$$= 18 \int_0^1 (t^2 - 2t^3 + t^4)dt = 18 \left[\frac{t^3}{3} - \frac{t^4}{2} + \frac{t^5}{5} \right]_0^1 = \frac{3}{5}.$$

(3) The length of the curve is

$$\int_0^a \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

$$= \int_0^a \sqrt{36t^2(1-t)^2 + (3-6t)^2} dt$$

$$= 3 \int_0^a \sqrt{4t^4 - 8t^3 + 8t^2 - 4t + 1} dt$$

$$= 3 \int_0^a (2t^2 - 2t + 1)dt \quad (\because 2t^2 - 2t + 1 = 2(t - \frac{1}{2})^2 + \frac{1}{2} > 0)$$

$$= [2t^3 - 3t^2 + 3t]_0^a = 2a^3 - 3a^2 + 3a.$$

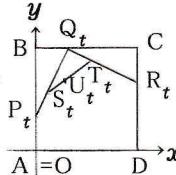
② (1) Let $f(x) = \ln x - (x-1)$, $x > 0$.

$$\text{Then } f'(x) = \frac{1}{x} - 1 \text{ gives the table on the right. Hence } f(x) \leq f(1) = 0, \text{ i.e. } \ln x \leq x-1.$$

(2) Let $I = \int_1^2 \ln\left(\frac{1+x^{1/n}}{2}\right) dx$. It follows from (1)

$$\text{that } \ln\frac{1+x^{1/n}}{2} \leq \frac{1+x^{1/n}}{2} - 1 = \frac{x^{1/n}-1}{2}.$$

$$\therefore I \leq \int_1^2 \frac{x^{1/n}-1}{2} dx = \frac{1}{2} \left[\frac{n}{n+1} x^{\frac{n+1}{n}} - x \right]_1^2$$



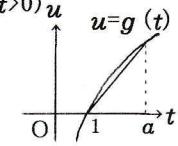
$$= \frac{1}{2} \left\{ \frac{n}{n+1} \left(2^{\frac{n+1}{n}} - 1 \right) - 1 \right\} = \frac{n}{n+1} 2^{\frac{1}{n}} - \frac{2n+1}{2(n+1)}.$$

$$\therefore nI \leq \frac{n}{n+1} (n \cdot 2^{\frac{1}{n}} - \frac{2n+1}{2}) = \frac{n}{n+1} \left(\frac{2^{\frac{1}{n}} - 1}{1/n} - \frac{1}{2} \right) \quad \text{①}$$

Next, the graph of $u = g(t) = \ln t$ ($t > 0$)

is upwards convex, because

$$g'(t) = \frac{1}{t} \text{ and } g''(t) = -\frac{1}{t^2} < 0.$$



Thus it lies over the segment connecting $(1, 0)$ and $(a, \ln a)$, where $a > 1$.

In other words, if $1 \leq t \leq a$, $\ln t \geq \frac{\ln a}{a-1} (t-1) \quad \text{②}$

$$\text{If } 1 \leq x \leq 2, 1 \leq \frac{1+x^{1/n}}{2} \leq \frac{1+2^{1/n}}{2}.$$

Letting $t = \frac{1+x^{1/n}}{2}$ and $a = \frac{1+2^{1/n}}{2}$ in ②, we get

$$\ln \frac{1+x^{1/n}}{2} \geq \frac{\ln \frac{1+2^{1/n}}{2}}{2^{1/n}-1} \cdot \frac{x^{1/n}-1}{2}.$$

$$\therefore I \geq \frac{\ln \frac{1+2^{1/n}}{2}}{2^{1/n}-1} \int_1^2 \frac{x^{1/n}-1}{2} dx$$

$$= \frac{\ln \frac{1+2^{1/n}}{2}}{2^{1/n}-1} \left(\frac{n}{n+1} 2^{\frac{1}{n}} - \frac{2n+1}{2(n+1)} \right).$$

$$\therefore nI \geq \frac{\ln \frac{1+2^{1/n}}{2}}{2^{1/n}-1} \cdot \frac{n}{n+1} \left(\frac{2^{\frac{1}{n}}-1}{1/n} - \frac{1}{2} \right) \quad \text{③}$$

By the way, $\lim_{n \rightarrow \infty} \frac{n}{n+1} = 1$,

$$\lim_{n \rightarrow \infty} \frac{2^{1/n}-1}{1/n} = \lim_{1/n \rightarrow 0} \frac{2^{1/n}-2^0}{1/n-0} = \frac{d}{dt} 2^t \Big|_{t=0} = 2^t \ln 2 \Big|_{t=0} = \ln 2.$$

Hence the R.H.S. of ① converges to $\ln 2 - \frac{1}{2}$ as $n \rightarrow \infty$. Furthermore, $v := 2^{1/n} \rightarrow 1$ as $n \rightarrow \infty$, and

$$\lim_{n \rightarrow \infty} \frac{\ln \frac{1+2^{1/n}}{2}}{2^{1/n}-1} = \lim_{v \rightarrow 1} \frac{\ln \frac{1+v}{2}}{v-1} = \lim_{v \rightarrow 1} 2 \frac{\ln(1+v) - \ln 2}{v-1}$$

$$= 2 \frac{d}{dt} \ln(1+t) \Big|_{t=1} = 2 \cdot \frac{1}{1+t} \Big|_{t=1} = 1. \text{ Hence the R.H.S. of ③ converges to } \ln 2 - \frac{1}{2} \text{ as } n \rightarrow \infty.$$

Thus we get $\lim_{n \rightarrow \infty} nI = \ln 2 - \frac{1}{2}$ by squeezing.

3 (1) As ABCD is a parallelogram, we have

$$\angle CDA = \angle ABC = \frac{\pi}{6},$$

$$\angle BCD = \angle DAB = \pi - \frac{\pi}{6} = \frac{5\pi}{6}.$$

CD=AB=a, DA=BC=b.

$$\text{AS } \angle BCG = \theta, \angle CBG = \frac{\pi}{2} - \theta.$$

$$\therefore ABF = \pi - \frac{\pi}{6} - \left(\frac{\pi}{2} - \theta\right) = \frac{\pi}{3} + \theta.$$

$$\therefore FG = FB + BG = a \cos\left(\theta + \frac{\pi}{3}\right) + b \sin \theta \cdots ①$$

$$\text{Similarly, } \angle DCH = \pi - \frac{5\pi}{6} - \theta = \frac{\pi}{6} - \theta,$$

$$GH = GC + CH = b \cos \theta + a \cos\left(\frac{\pi}{6} - \theta\right) \cdots ②$$

$$\therefore S = FG \cdot GH$$

$$= \{a \cos\left(\theta + \frac{\pi}{3}\right) + b \sin \theta\} \{a \cos\left(\frac{\pi}{6} - \theta\right) + b \cos \theta\}$$

$$\stackrel{①, ②}{=} \{a \sin\left(\frac{\pi}{6} - \theta\right) + b \sin \theta\} \{a \cos\left(\frac{\pi}{6} - \theta\right) + b \cos \theta\}$$

$$= a^2 \sin\left(\frac{\pi}{6} - \theta\right) \cos\left(\frac{\pi}{6} - \theta\right) + b^2 \sin \theta \cos \theta$$

$$+ ab \{ \sin\left(\frac{\pi}{6} - \theta\right) \cos \theta + \cos\left(\frac{\pi}{6} - \theta\right) \sin \theta \}$$

$$= \frac{a^2}{2} \sin\left(\frac{\pi}{3} - 2\theta\right) + \frac{b^2}{2} \sin 2\theta + ab \sin\frac{\pi}{6}$$

$$= \frac{a^2}{2} \left(\frac{\sqrt{3}}{2} \cos 2\theta - \frac{1}{2} \sin 2\theta \right) + \frac{b^2}{2} \sin 2\theta + \frac{ab}{2}$$

$$= \frac{2b^2 - a^2}{4} \sin 2\theta + \frac{\sqrt{3}a^2}{4} \cos 2\theta + \frac{ab}{2}.$$

(2) θ ranges between 0 and $\frac{\pi}{6}$,

and it follows from (1) that

$$S = \frac{\sqrt{a^4 - a^2 b^2 + b^4}}{2} \sin(2\theta + \alpha) + \frac{ab}{2},$$

where α is the angle indicated on the right.

As $0 < a \leq b$, $2b^2 - a^2 > 0$ so that α is acute. $2\theta + \alpha$ ranges between α and $\frac{\pi}{3} + \alpha$. Furthermore, $\frac{\pi}{3} + \alpha \geq \frac{\pi}{2}$ holds

$$\text{iff } \alpha \geq \frac{\pi}{6} \Leftrightarrow \tan \alpha \geq \frac{1}{\sqrt{3}} \Leftrightarrow \frac{\sqrt{3}a^2}{2b^2 - a^2} \geq \frac{1}{\sqrt{3}}$$

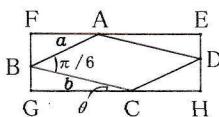
$$\Leftrightarrow 3a^2 \geq 2b^2 - a^2 \Leftrightarrow b \leq \sqrt{2}a.$$

Therefore, if $a \leq b \leq \sqrt{2}a$, S takes maximum

$$\frac{\sqrt{a^4 - a^2 b^2 + b^4} + ab}{2} \text{ when } \theta = \frac{\pi - 2\alpha}{4}, \text{ and}$$

$$\text{if } b > \sqrt{2}a, S \text{ takes maximum } \frac{\sqrt{3}b^2 + 2ab}{4}$$

$$\text{when } \theta = \frac{\pi}{6}.$$



4 (1) Proof by contradiction.

If $f_a(n) = n^2 + n - a$ is a square number, there exists a nonnegative integer m such that $n^2 + n - a = m^2 \cdots ①$

Suppose $n > a$. Then the L.H.S. of ① is greater than n^2 so that $m \geq n+1$. Hence the R.H.S. of ① is not less than $(n+1)^2$, and $(\text{R.H.S.}) - (\text{L.H.S.}) \geq (n+1)^2 - (n^2 + n - a) = n + a + 1 > 0$, a contradiction.

(2) Consider a pair of integers (n, m) , where $n > 0, m \geq 0$, satisfying

$$① \Leftrightarrow (n + \frac{1}{2})^2 - m^2 = a + \frac{1}{4}$$

$$\Leftrightarrow (2n+2m+1)(2n-2m+1) = 4a+1 \cdots ①'$$

As $4a+1$ is an odd integer not less than 5,

$2n+2m+1, 2n-2m+1$ are positive odd integers satisfying $2n+2m+1 \geq 2n-2m+1 \cdots ②$

(ii) \Rightarrow (i): If $4a+1$ is a prime, it follows from ①'

$$\text{and ② that } \begin{cases} 2n+2m+1 = 4a+1 \\ 2n-2m+1 = 1 \end{cases} \Leftrightarrow n = m = a$$

$$\therefore N_a = 1.$$

(i) \Rightarrow (ii): We shall prove the contrapositive.

If $4a+1$ is not a prime, we can express $4a+1 = pq$, where p, q are positive odd integers satisfying $3 \leq p \leq q$.

p, q are congruent to 1 or 3 modulo 4, and the chart on the right gives

us $(p, q) \equiv (1, 1)$ or $(3, 3)$ modulo 4. Therefore,

$$\begin{cases} 2n+2m+1 = q \\ 2n-2m+1 = p \end{cases} \Leftrightarrow (n, m) = \left(\frac{p+q-2}{4}, \frac{q-p}{4} \right)$$

is a pair satisfying ①' and different from (a, a) , i.e. $N_a \geq 2$.

Thus (i) \Leftrightarrow (ii) is proved.

5 Note that the card n stays in the rightmost position after the 1st (T_{n-1}), and the card 1 stays in the leftmost position after the 2nd (T_1).

(1) Proof by contradiction.

If $\{A_1, A_2\} = \{k, \ell\}$ ($k > \ell > 2$), then the arrangement after the 1st (T_1) is $\ell k A_3 \cdots A_n$. The card ℓ stays there until the 2nd (T_2), and will be replaced by the card 1 at the 2nd (T_1). In other words, the 2nd card (from the left end) will end in $\ell (> 2)$, a contradiction.

(2) It follows from (1) that

$\{A_1, A_2\} = \{1, 2\} \cdots ①$, $\{1, k\} \cdots ②$, or $\{2, \ell\} \cdots ③$, where k, ℓ are integers not less than 3.

Case①. $(A_1, A_2) = (1, 2)$ or $(2, 1)$, and the 1st (T_1) makes the arrangement $12A_3 \cdots A_n$. The cards 1 and 2 stay there, and $A_3 \cdots A_n$ is reordered to $3 \cdots n$ after the $2(n-3)$ operations. Thus the number of possible arrangement $A_3 \cdots A_n$ is C_{n-2} .
Case②. $(A_1, A_2) = (1, k)$ or $(k, 1)$, and the 1st (T_1) makes the arrangement $1kA_3 \cdots A_n$. The card 1 stays there, and $kA_3 \cdots A_n$ is reordered to $2 \cdots n$ after the $2(n-2)$ operations. Thus the number of possible arrangement $kA_3 \cdots A_n$ is $C_{n-1} - C_{n-2}$.

↑
leftmost card is 2

Case③. $(A_1, A_2) = (2, \ell)$ or $(\ell, 2)$, and the 1st (T_1) makes the arrangement $2\ell A_3 \cdots A_n$. The card 2 stays there until the 2nd (T_2) , and will be replaced by the card 1 at the 2nd (T_1) . The number of possible arrangement $\ell A_3 \cdots A_n$ is $C_{n-1} - C_{n-2}$ as in the case②.
↑
leftmost card is 1
Finally, $C_n = 2C_{n-2} + 2(C_{n-1} - C_{n-2}) + 2(C_{n-1} - C_{n-2})$
= $4C_{n-1} - 2C_{n-2}$.

Remark Solving the recurrence

$$C_2 = 2, C_3 = 6, \text{ and } C_n = 4C_{n-1} - 2C_{n-2} \quad (n \geq 4),$$

$$\text{we get } C_n = \frac{(2+\sqrt{2})^{n-1} + (2-\sqrt{2})^{n-1}}{2} \quad (n \geq 2).$$

⑥ (1) As $z \in \mathbb{C}$, we can express

$$z = \frac{1}{2}(1 + \cos \theta) + \frac{i}{2} \sin \theta \quad (-\pi < \theta < \pi).$$

Then

$$\frac{1}{z} = \frac{2}{(1 + \cos \theta) + i \sin \theta} = \frac{1}{\cos \frac{\theta}{2} \left(\cos \frac{\theta}{2} + i \sin \frac{\theta}{2} \right)}$$

$$= \frac{1}{\cos \frac{\theta}{2}} \left(\cos \frac{\theta}{2} - i \sin \frac{\theta}{2} \right) = 1 - i \tan \frac{\theta}{2}.$$

$$\therefore \operatorname{Re} \left(\frac{1}{z} \right) = 1.$$

(2) If $\alpha, \beta \in \mathbb{C}$, (1) allows us to express

$$\frac{1}{\alpha} = 1 + ai, \quad \frac{1}{\beta} = 1 + bi, \quad \text{where } a, b \in \mathbb{R}.$$

Furthermore, $-\pi < \theta < \pi$ implies that $-\tan \frac{\theta}{2}$ can be any real number. In other words, a, b range the entire reals provided $a \neq b$.

$$\frac{1}{a^2} + \frac{1}{b^2} = 1 + 2ai - a^2 + 1 + 2bi - b^2 = (2 - a^2 - b^2) + 2(a + b)i$$

If we put $(x, y) = (2 - a^2 - b^2, 2(a + b))$,

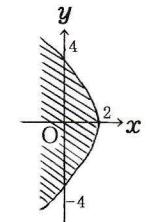
$$ab = \frac{(a+b)^2 - (a^2 + b^2)}{2} = \frac{\frac{(y)}{2})^2 - (2-x)}{2} = \frac{4x+y^2}{8} - 1.$$

Hence a, b are the distinct real roots of the quadratic equation $t^2 - \frac{y}{2}t + \frac{4x+y^2}{8} - 1 = 0$,

$$\text{whose discriminant } \frac{y^2}{4} - 4\left(\frac{4x+y^2}{8} - 1\right) > 0$$

$$\Leftrightarrow x < 2 - \frac{y^2}{8}.$$

Therefore, $\frac{1}{a^2} + \frac{1}{b^2}$ moves around the domain on the right (boundary excluded).



(3) If we put $\gamma = x + yi$, where x, y are reals,

$$\text{then it follows from (2) that } x \geq 2 - \frac{y^2}{8} \cdots \text{①}$$

$$\text{Furthermore, } \frac{1}{\gamma} = \frac{1}{x+yi} = \frac{x-yi}{x^2+y^2}$$

$$\text{gives us } \operatorname{Re} \left(\frac{1}{\gamma} \right) = \frac{x}{x^2+y^2}.$$

$$\text{If there exists a maximum of } \frac{x}{x^2+y^2}, \text{ it happens when } x > 0.$$

If we fix a positive x , y moves around the entire reals if $x \geq 2$, $y^2 \geq 16 - 8x$ (\because ①) if $0 < x < 2$.

As $\operatorname{Re} \left(\frac{1}{\gamma} \right)$ is decreasing in y^2 , it takes

$$\text{maximum } \begin{cases} \frac{1}{x} & \text{at } y=0, \text{ if } x \geq 2, \\ \frac{x}{(x-4)^2} & \text{at } y = \pm 2\sqrt{4-2x}, \text{ if } 0 < x < 2. \end{cases}$$

Hence the maximum M of $\operatorname{Re} \left(\frac{1}{\gamma} \right)$ is

$$\max \left\{ \frac{1}{2}, \max_{0 < x < 2} \frac{x}{(x-4)^2} \right\}.$$

Similarly, the minimum m of $\operatorname{Re} \left(\frac{1}{\gamma} \right)$ is

$$\min_{x < 0} \frac{x}{(x-4)^2}.$$

If we put $f(x) = \frac{x}{(x-4)^2}$ ($x < 2$),

$$f'(x) = \frac{(x-4)^2 - x \cdot 2(x-4)}{(x-4)^4} = \frac{x+4}{(4-x)^3}$$

gives us the chart on the right.

$$\begin{array}{c|c|c|c} x & -4 & 0 & + \\ \hline f'(x) & - & 0 & + \\ \hline f(x) & -\frac{1}{16} & \uparrow & \uparrow \left(\frac{1}{2} \right) \end{array} \quad (2)$$

Therefore, $M = \frac{1}{2}$ ($\gamma = 2$), $f(x) \uparrow$ ($\gamma = \frac{1}{2}$)

$$m = -\frac{1}{16}$$

Problems for those who wish to major in Literature, Economics, etc. (100 min.)

1 Let a be a positive number, and $C: y=x^2$ be a parabola on a coordinate plane. Let ℓ be the normal to C at $P(a, a^2)$ (the line orthogonal to the tangent to C at P), and Q be the point of intersection of ℓ and C , other than P .

(1) Find the x -coordinate of Q .

Let m be the normal to C at Q , and R be the point of intersection of m and C , other than Q .

(2) Find the minimum of the x -coordinate of R , if a varies in the set of positive numbers.

2 Consider an isosceles triangle ABC satisfying $AB=AC=1$ on a plane. Let $r>0$, and D_r be the union of 3 circles of radius r centered at A, B and C , where all the triangle and circles consist of their circumferences and insides. Let s be the minimal r such that D_r contains all the edges AB , AC and BC , and t be the minimal r such that D_r contains $\triangle ABC$.

(1) Find the s and t , if $\angle BAC=\frac{\pi}{3}$.

(2) Find the s and t , if $\angle BAC=\frac{2\pi}{3}$.

(3) If $\angle BAC=\theta$, where $0<\theta<\pi$, express the s and t in terms of θ .

3 2 white balls are put side by side. Tossing a coin whose head and tail will show up equally, add a white ball or a black one in the row according to the process below.

Process (*): Add a white (black) ball at the right end of the row if the head (tail) of the coin shows up. Furthermore, if the rightmost 3 balls turn WBW (BWB), where W (B) means a white (black) ball, replace them by WWW (BBB).

For example, if we toss the coin twice and the tail and head show up in order, the row will be of 4 white balls.

Let n be a positive integer and consider the row of $(n+2)$ balls after applying the process (*) n times.

(1) If $n=3$, find the probability that the 2nd ball from the right end is white.

(2) Let n be a positive integer. Find the probability that the 2nd ball from the right end is white.

(3) Let n be a positive integer. Find the probability that the rightmost 2 balls are white.

4 Let a be a real number and $S(a)$ be the area of the region defined by on a coordinate plane.

Find the maximum of $S(a)$, if a moves over the interval $-2 \leq a < 2$.

$$\begin{cases} y \leq -\frac{1}{2}x^2 + 2 \\ y \geq |x^2 + a| \\ -1 \leq x \leq 1 \end{cases}$$

Solution for the 2025 Math Exam at Univ. of Tokyo (Literature, etc.)

① (1) As $(x^2)'=2x$, $2a$ is the slope of the tangent to C at $P(a, a^2)$. Hence ℓ is the line passing through P with slope $-\frac{1}{2a}$:

$$y = -\frac{1}{2a}(x-a) + a^2 = -\frac{1}{2a}x + \frac{1}{2} + a^2.$$

The x -coordinate of a point of intersection of C and ℓ is a root of $x^2 = -\frac{1}{2a}x + \frac{1}{2} + a^2$

$$\Leftrightarrow x^2 + \frac{1}{2a}x - \frac{1}{2} - a^2 = (x-a)(x+a+\frac{1}{2a}) = 0$$

$$\Leftrightarrow x = a, -a - \frac{1}{2a}.$$

Therefore, the x -coordinate of Q is $-a - \frac{1}{2a}$.

(2) Letting $b = -a - \frac{1}{2a} (< 0)$, we get

$$m: y = -\frac{1}{2b}x + \frac{1}{2} + b^2 \text{ as we did in (1).}$$

Also, the x -coordinate of R is $x_R = -b - \frac{1}{2b}$.

By the way, $a + \frac{1}{2a} \geq 2\sqrt{a \cdot \frac{1}{2a}} = \sqrt{2}$, where

the equality holds when $a = \frac{1}{2a} \Leftrightarrow a = \frac{1}{\sqrt{2}}$,

which follows from $a > 0$ and the fact that "the arithmetic mean of 2 positive numbers is not less than their geometric mean."

Hence $b = -(a + \frac{1}{2a}) \leq -\sqrt{2}$, and the equality

holds when $a = \frac{\sqrt{2}}{2}$.

Furthermore, $\frac{dx_R}{db} = -1 + \frac{1}{2b^2} = \frac{1-2b^2}{2b^2}$ so that $\frac{dx_R}{db} < 0$ and x_R is monotone decreasing over the interval $b \leq -\sqrt{2}$.

Therefore, x_R takes the minimum $\frac{5\sqrt{2}}{4}$ at $b = -\sqrt{2} \Leftrightarrow a = \frac{\sqrt{2}}{2}$.

② First note that any point of D_r belongs to at least one of the 3 circles of radius r , centered at A, B and C . Also, the minimal r such that $P \in D_r$ is the minimum of PA, PB and PC . Moreover, the set of points P such that $PA=PB$ ($PB=PC$, $PC=PA$, respectively) is the perpendicular bisector of the edge AB (BC, CA , respectively), and expressed as a dotted line in the figures.

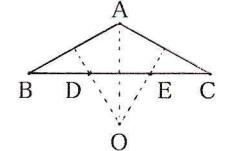
The set of points whose nearest vertex is A , among which the circumcenter O is the farthest from A .

(1) If $\angle BAC = \frac{\pi}{3}$, $\triangle ABC$ is equilateral.

Among the points on $\partial(\triangle ABC)$, the circumference of $\triangle ABC$, the midpoints of the edges are the farthest from their nearest vertices. Thus $s = \frac{1}{2}$.

Among the points of $\triangle ABC$, the circumcenter is the farthest from its nearest vertices. Hence the sine rules gives us

$$t = \frac{1}{2\sin\frac{\pi}{3}} = \frac{\sqrt{3}}{3}.$$



(2) If $\angle BAC = \frac{2\pi}{3}$,

$\angle ABC = \angle ACB = \frac{\pi}{6}$, and the points D, E shown are the farthest from their nearest vertices, among the points of $\triangle ABC$.

$$\therefore s = t = BD (= AD = AE = CE).$$

$$\text{As } BD \cos \frac{\pi}{6} = \frac{AB}{2} = \frac{1}{2}, \quad BD = \frac{1}{2} \cdot \frac{2}{\sqrt{3}} = \frac{\sqrt{3}}{3}.$$

$$\therefore s = t = \frac{\sqrt{3}}{3}.$$

(3) If $\angle BAC = \theta$, $\angle ABC = \angle ACB = \frac{\pi - \theta}{2}$.

(i) If $0 < \theta < \frac{\pi}{3}$, $\angle ABC = \angle ACB > \angle BAC$ so that $AB = AC > BC$. Therefore, among the points of $\partial(\triangle ABC)$, the midpoints of AB, AC are the farthest from their nearest vertices. $\therefore s = \frac{1}{2}$.

Among the points of $\triangle ABC$, the circumcenter is the farthest from its nearest vertices so that the sine rule gives us

$$t = \frac{AB}{2\sin \angle ACB} = \frac{1}{2\sin(\frac{\pi}{2} - \frac{\theta}{2})} = \frac{1}{2\cos \frac{\theta}{2}}.$$

(ii) If $\frac{\pi}{3} < \theta \leq \frac{\pi}{2}$, $\angle BAC > \angle ABC = \angle ACB$ so that $BC > AB = AC$. Therefore, among the points of $\partial(\triangle ABC)$, the midpoint of BC is the farthest from its nearest vertices.

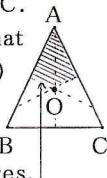
$$\therefore s = \frac{BC}{2} = BC \cos(\frac{\pi}{2} - \frac{\theta}{2}) = \sin \frac{\theta}{2}.$$

$$\text{Quite similarly as in (i), } t = \frac{1}{2\cos \frac{\theta}{2}}.$$

(iii) If $\frac{\pi}{2} < \theta < \pi$, the points

F, G shown right are the farthest from their nearest vertices, among the points of $\triangle ABC$.

$$\therefore s = t = BF = \frac{AB/2}{\cos(\frac{\pi}{2} - \frac{\theta}{2})} = \frac{1}{2\sin \frac{\theta}{2}}.$$



It follows from (1) and (i)–(iii) that

$$s = \begin{cases} \frac{1}{2} (0 < \theta \leq \frac{\pi}{3}) \\ \sin \frac{\theta}{2} (\frac{\pi}{3} < \theta \leq \frac{\pi}{2}), \\ \frac{1}{2\sin \frac{\theta}{2}} (\frac{\pi}{2} < \theta < \pi) \end{cases}$$

$$t = \begin{cases} \frac{1}{2\cos \frac{\theta}{2}} (0 < \theta \leq \frac{\pi}{2}) \\ \frac{1}{2\sin \frac{\theta}{2}} (\frac{\pi}{2} < \theta < \pi) \end{cases}$$

③ (1) We will denote the head (tail) of the coin by H (T).

If $n=3$, the following 8 cases can happen equally:

1st toss	2nd toss	3rd toss	the row of balls
H	H	H	WWWWWW
H	H	T	WWWWWB
H	T	H	WWWWWW
H	T	T	WWWBB
T	H	H	WWWWWW
T	H	T	WWWWWB
T	T	H	WWBBW
T	T	T	WWBBB

Therefore, the probability to find is $\frac{5}{8}$.

(2)(3) Let p_n (q_n) be the probability that the 2nd ball from the right end is white (the rightmost 2 balls are white) after applying the process (*) n times.

The rightmost 2 balls in the row are (i) WW, (ii) WB, (iii) BW or (iv) BB, and let a_n, b_n, c_n, d_n be the probability that (i), (ii), (iii), (iv) happens after applying the process (*) n times. Then

$$p_n = a_n + b_n \cdots ①, \quad q_n = a_n \cdots ②, \quad a_n + b_n + c_n + d_n = 1 \cdots ③,$$

and $a_1 = b_1 = \frac{1}{2}, c_1 = d_1 = 0 \cdots ④$

Furthermore, the rightmost 2 balls of the row after the $(n+1)$ th process will be:

	$(n+1)$ th toss	
the rightmost 2 balls after the n th process	H	T
(i)	WW	WB
(ii)	WW	BB
(iii)	WW	BB
(iv)	BW	BB

$$\text{Hence } a_{n+1} = \frac{1}{2}(a_n + b_n + c_n) \cdots ⑤, \quad b_{n+1} = \frac{1}{2}a_n \cdots ⑥$$

$$c_{n+1} = \frac{1}{2}d_n \cdots ⑦, \quad d_{n+1} = \frac{1}{2}(b_n + c_n + d_n)$$

③, ⑤ and ⑦ give us $a_{n+1} + c_{n+1} = \frac{1}{2}$.

This and ④ imply that $c_n = \frac{1}{2} - a_n \cdots ⑧$ for $n \geq 1$.

$$⑤ \text{ and } ⑧ \text{ give us } a_{n+1} = \frac{1}{2}(b_n + \frac{1}{2}) \cdots ⑨$$

$$⑥ + ⑨: a_{n+1} + b_{n+1} = \frac{1}{2}(a_n + b_n) + \frac{1}{4}$$

$$\Leftrightarrow p_{n+1} = \frac{1}{2}p_n + \frac{1}{4} \Leftrightarrow p_{n+1} - \frac{1}{2} = \frac{1}{2}(p_n - \frac{1}{2})$$

This and ①, ④ tell us that $\{p_n - \frac{1}{2}\}$ is a geometric sequence with initial term

$$p_1 - \frac{1}{2} = \frac{1}{2} \text{ and the common ratio } \frac{1}{2}$$

$$\therefore p_n - \frac{1}{2} = (\frac{1}{2})^n \Leftrightarrow p_n = \frac{1}{2} + (\frac{1}{2})^n \cdots ⑩$$

solution for (2)

$$\text{Next, } ⑨ - ⑥: a_{n+1} - b_{n+1} = -\frac{1}{2}(a_n - b_n) + \frac{1}{4}$$

$$\Leftrightarrow a_{n+1} - b_{n+1} - \frac{1}{6} = -\frac{1}{2}(a_n - b_n - \frac{1}{6})$$

This and ④ tell us that $\{a_n - b_n - \frac{1}{6}\}$ is a geometric sequence with initial term

$$a_1 - b_1 - \frac{1}{6} = -\frac{1}{6} \text{ and the common ratio } -\frac{1}{2}$$

$$\therefore a_n - b_n - \frac{1}{6} = -\frac{1}{6}(-\frac{1}{2})^{n-1} \Leftrightarrow a_n - b_n = \frac{1}{6} + \frac{1}{3}(-\frac{1}{2})^n$$

This and ⑩ $\Leftrightarrow a_n + b_n = \frac{1}{2} + (\frac{1}{2})^n$ give us

$$2a_n = \frac{2}{3} + (\frac{1}{2})^n + \frac{1}{3}(-\frac{1}{2})^n$$

$$\Leftrightarrow q_n = \frac{1}{3} + \frac{1}{2^{n+1}} + \frac{1}{6}(-\frac{1}{2})^n$$

solution for (3)

4

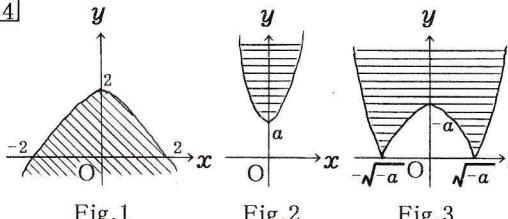


Fig.1

Fig.2

Fig.3

$y \leq -\frac{1}{2}x^2 + 2$ is expressed as in the Fig.1, and $y \geq |x^2 + a|$ is expressed as in the Fig.2(3) if $a \geq 0$ ($a < 0$). All of them are symmetric with respect to the y -axis.

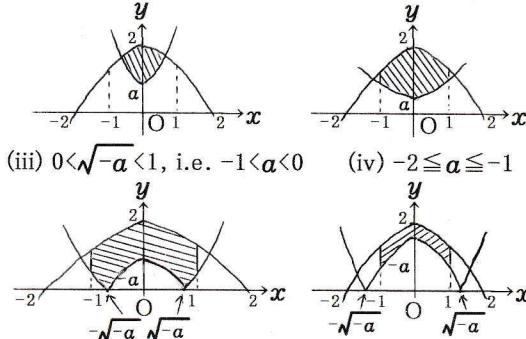
Furthermore, $y = -\frac{1}{2}x^2 + 2$ and $y = x^2 + a$

intersect in $x = \pm \sqrt{\frac{2}{3}(2-a)}$, and

$$-\frac{1}{2}x^2 + 2 - (-x^2 - a) = \frac{x^2}{2} + 2 + a \geq 0 \text{ if } -2 \leq a < 0.$$

Hence the domain to consider is as follows:

$$(i) \frac{2}{3}(2-a) \leq 1, \text{ i.e. } \frac{1}{2} \leq a < 2 \quad (ii) 0 \leq a < \frac{1}{2}$$



$$\text{Case(i) } S(a) = \int_{-\sqrt{\frac{2}{3}(2-a)}}^{\sqrt{\frac{2}{3}(2-a)}} \left\{ -\frac{1}{2}x^2 + 2 - (x^2 + a) \right\} dx \\ = \frac{3}{2} \cdot \frac{1}{6} (2\sqrt{\frac{2}{3}(2-a)})^3 = 2(\sqrt{\frac{2}{3}(2-a)})^3,$$

which takes the maximum 2 at $a = \frac{1}{2}$.

$$\text{Case(ii) } S(a) = \int_{-1}^1 \left\{ -\frac{1}{2}x^2 + 2 - (x^2 + a) \right\} dx \\ = 2 \int_0^1 \left(-\frac{3}{2}x^2 + 2 - a \right) dx = [-x^3 + (4-2a)x]_0^1 = 3-2a,$$

which takes the maximum 3 at $a=0$.

$$\text{Case(iii) } S(a) = 2 \int_0^{\sqrt{-a}} \left\{ -\frac{1}{2}x^2 + 2 - (-x^2 - a) \right\} dx \\ + 2 \int_{\sqrt{-a}}^1 \left\{ -\frac{1}{2}x^2 + 2 - (x^2 + a) \right\} dx \\ = \left[\frac{x^3}{3} + (4+2a)x \right]_0^{\sqrt{-a}} + \left[-x^3 + (4-2a)x \right]_{\sqrt{-a}}^1 \\ = \frac{8}{3}a\sqrt{-a} - 2a + 3$$

If we put $b = \sqrt{-a}$, $0 < b < 1$ and $S(a) = -\frac{8}{3}b^3 + 2b^2 + 3$.

$$\therefore \frac{d}{db} S(a) = -8b^2 + 4b = 4b(1-2b) \quad b \quad \begin{array}{|c|c|c|} \hline (0) & \frac{1}{2} & 1 \\ \hline \end{array} \quad (1)$$

Thus we get the table on the right, and see that $S(a)$ takes the maximum $\frac{19}{6}$ when $b = \frac{1}{2} \Leftrightarrow a = -\frac{1}{4}$.

$$\text{Case(iv) } S(a) = 2 \int_0^1 \left\{ -\frac{1}{2}x^2 + 2 - (-x^2 - a) \right\} dx \\ = \left[\frac{x^3}{3} + (4+2a)x \right]_0^1 = 2a + \frac{13}{3},$$

which takes the maximum $\frac{7}{3}$ at $a = -1$.

It follows from (i)–(iv) that $S(a)$ takes the maximum $\frac{19}{6}$ at $a = -\frac{1}{4}$.

Remark The graph of $c = S(a)$.

